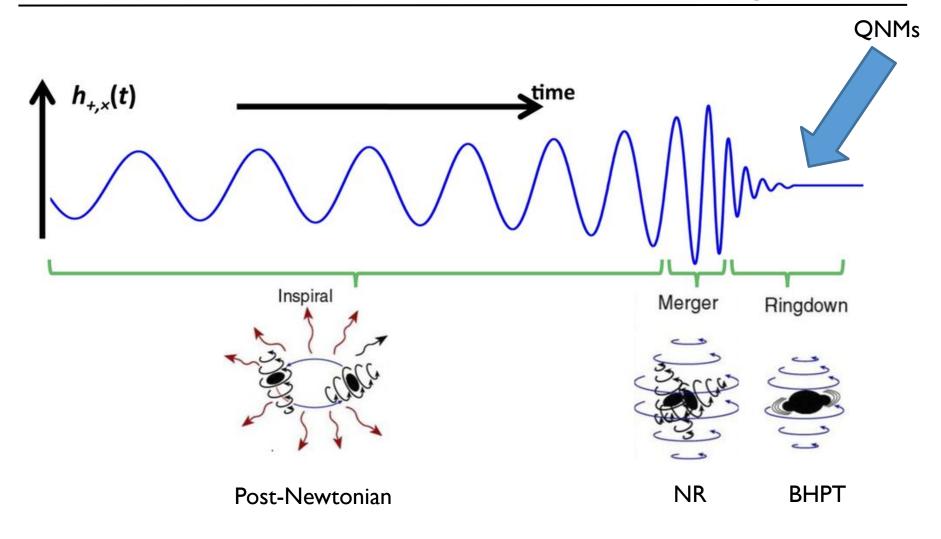
Quasi-normal modes and non-linearities

Béatrice Bonga - 22 March 2024

[Neev Khera, Ariadna Ribes Metidieri, BB, Xisco Jiménez Forteza, Badri Krishnan, Eric Poisson, Daniel Pook-Kolb, Erik Schnetter, Huan Yang PRL, arXiv:2306/11142]

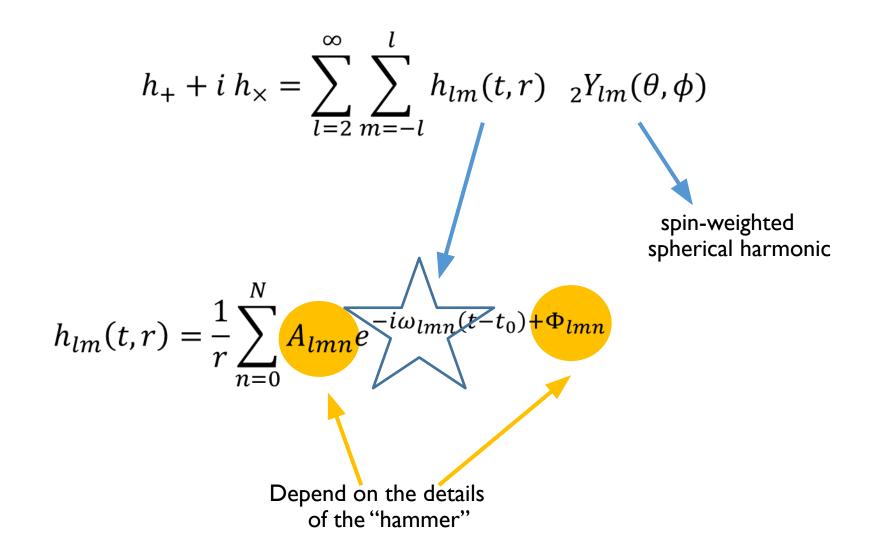
Radboud University

Gravitational waves from black hole mergers

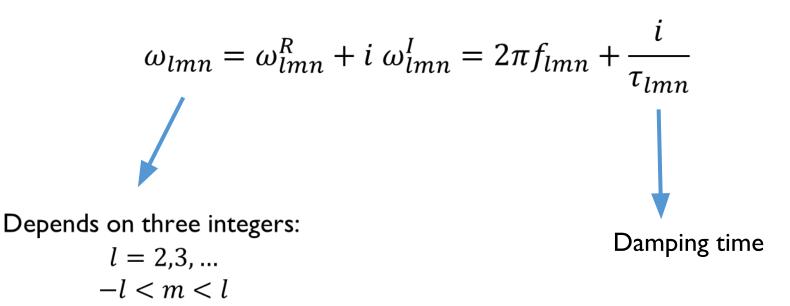


Quasi-normal modes

Mathematical description



 $n = 0, 1, 2, \dots$



Frequencies can be calculated using black hole perturbation theory

Perturbation theory

$$egin{aligned} & \Psi^{(1)} \sim A^{(1)}_{\pm,lmn}(r) e^{-i \omega_{\pm,lmn} t + i \phi_{\pm,lmn}} {}_2Y_{lm}(heta,arphi) \ & \mathcal{O}\Psi^{(1)} &= 0 \ & \mathcal{O}\Psi^{(2)} &= \mathcal{S}ig(h^{(1)},h^{(1)}ig) \ & \Psi^{(2)} \sim A^{(2)}_{\pm,lmn}(r) e_2^{-i \omega^{(2)}_{\pm,lmn} t + i \phi_{\pm,lmn}} Y_{lm}(heta,arphi) \end{aligned}$$

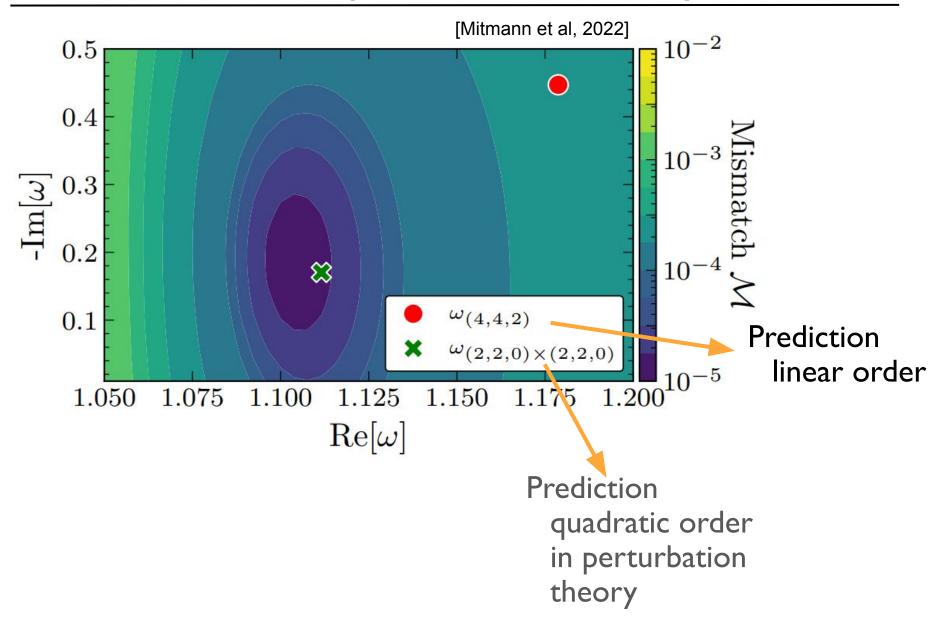
$$\omega_{lmn imes l'm'n'}=\omega_{lmn}+\omega_{l'm'n'}$$

$$\mathcal{O}\Psi^{(2)}=\mathcal{S}(h^{(1)},h^{(1)})$$

$$\begin{array}{l} & \begin{array}{l} \text{background} & \text{initial data} \end{array} \\ A_{lmn}^{(2)} Y_{lm} \sim \Sigma f(r;M) A_{lmn}^{(1)} A_{l'm'n'}^{(1)} Y_{lm} Y_{l'm'} \\ & \sim G_{lm \times l'm'} Y_{lm} \end{array}$$

$$A^{(2)}_{lmn imes l'm'n'} = c_{lmn imes l'm'n'}(M,a) A^{(1)}_{lmn} A^{(1)}_{l'm'n'}$$

Non-linear model preferred @ infinity



Implications for observations:

$$h^{obs} = h^{linear} + h^{non-linear}$$

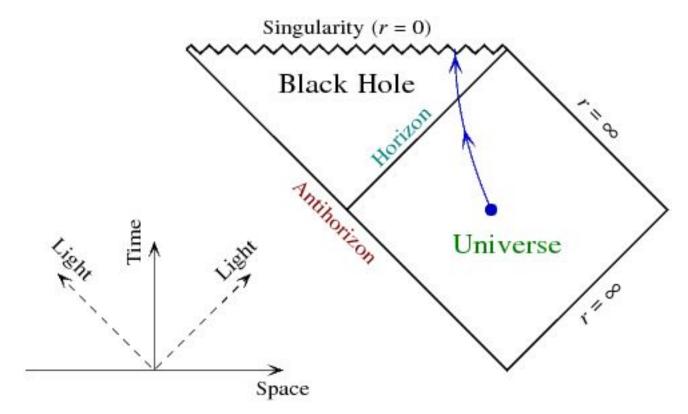
but frequencies are "finger-printed" with an order in perturbation theory!

Horizon should be more non-linear, but not too crazy → easier to find

quadratic QNMs

Horizon is strong field regime →hopeless to try to find any QNMs

... if observations are @ null infinity?



Electromagnetic observations and their sources

are interesting because of their origin!

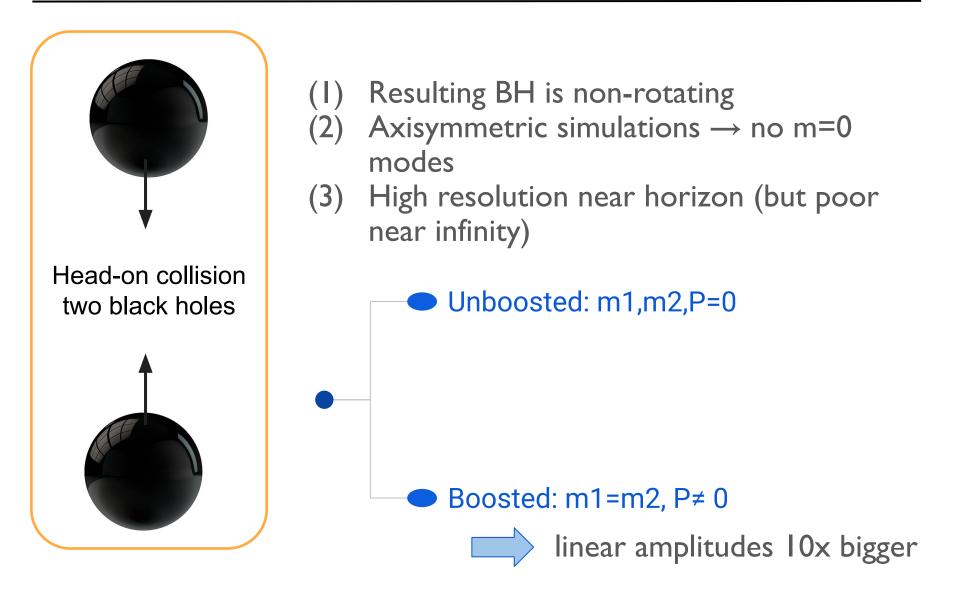
Corollary:

QNMs are interesting because they are emitted by black holes.

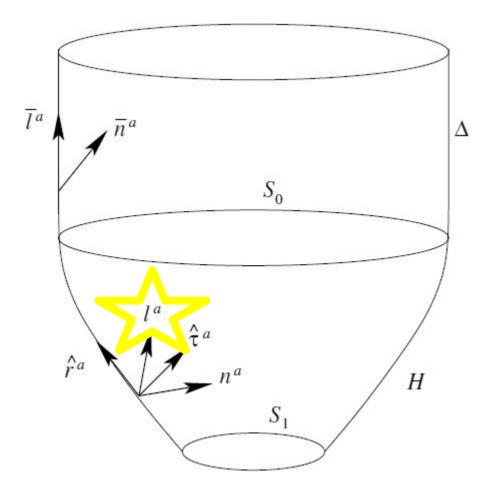
Disclaimer

All results are based on fitting observations. No theoretical derivations (yet)....

Two sets of simulations using the Einstein Toolkit



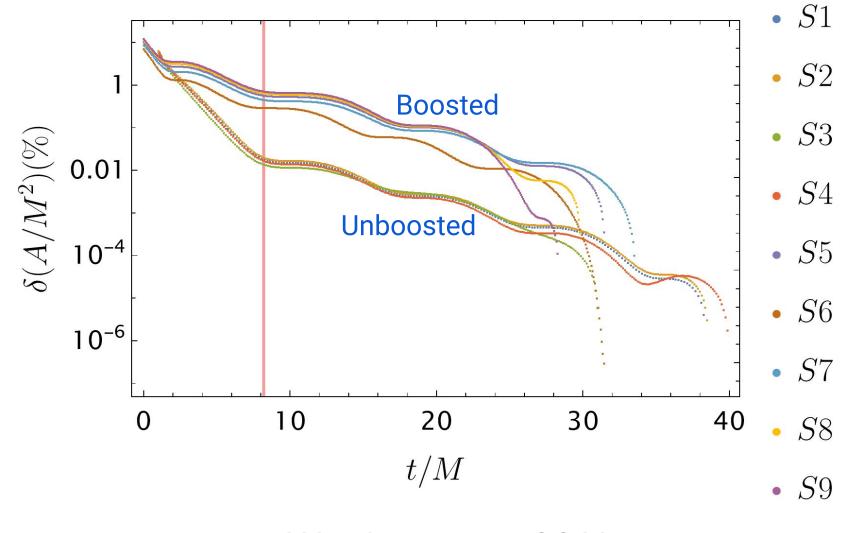
Shear at the horizon



Disclaimer: We simply use the simulation time.

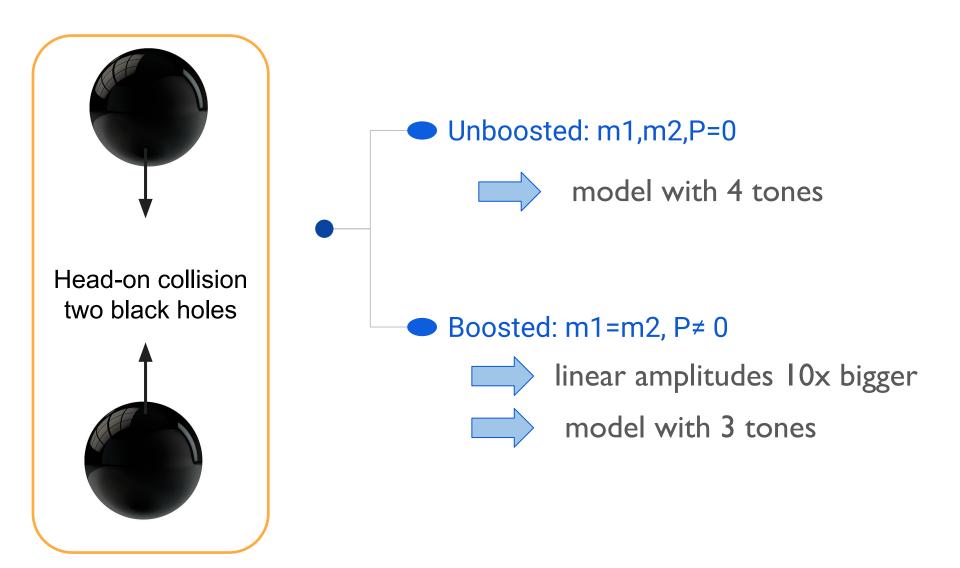
Same issue at infinity!

Ringdown: Mass changes $\leq 1 \%$



Ne take
$$t_{ringdown} = 8.2 M$$

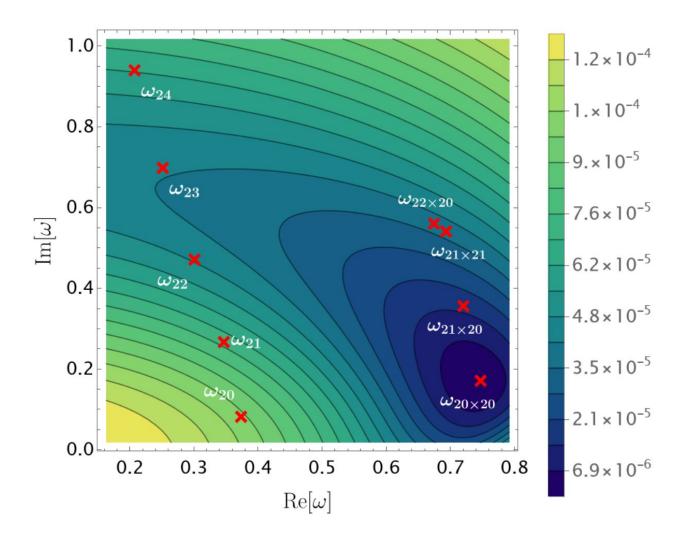
Two sets of simulations using the Einstein Toolkit



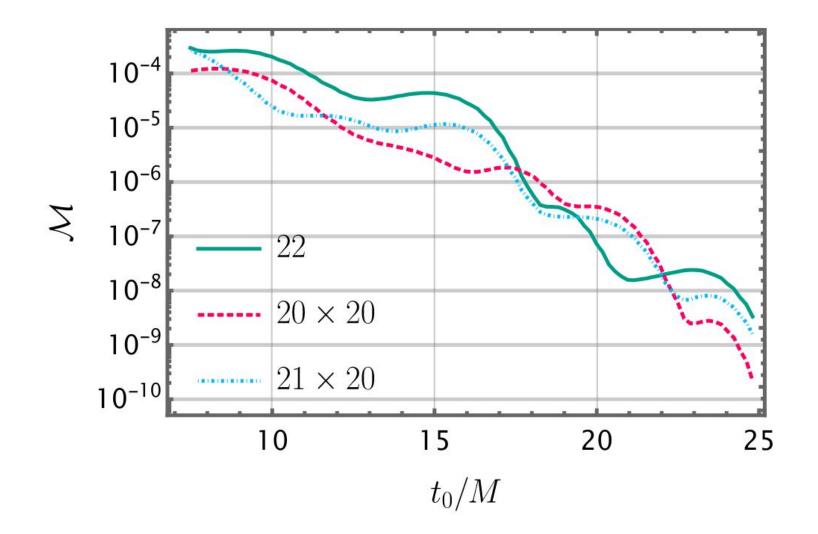
Equal mass \rightarrow I=2,4,6,... are only non-zero.

Notation: $\omega_{Imn} \rightarrow \omega_{In}$

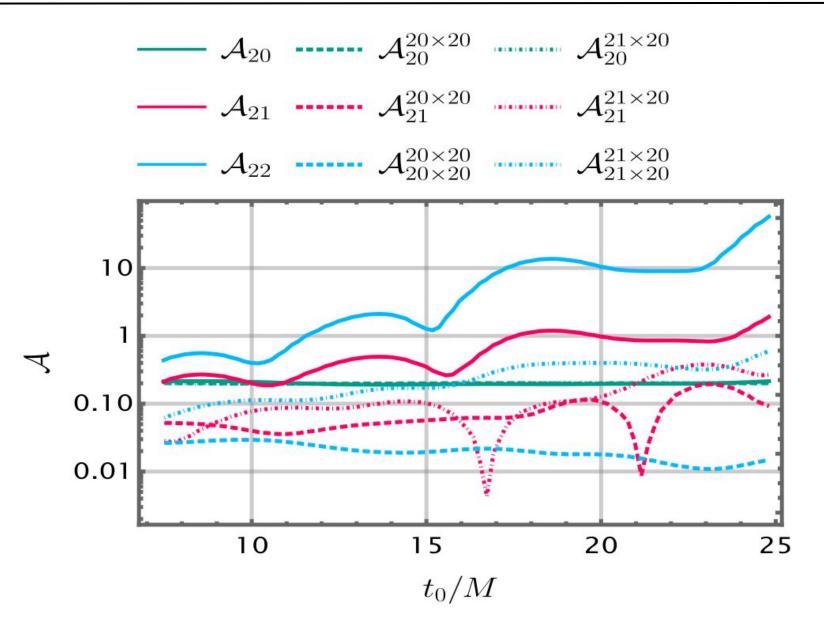
Mismatch S7 after fixing ω_{200} and ω_{201}



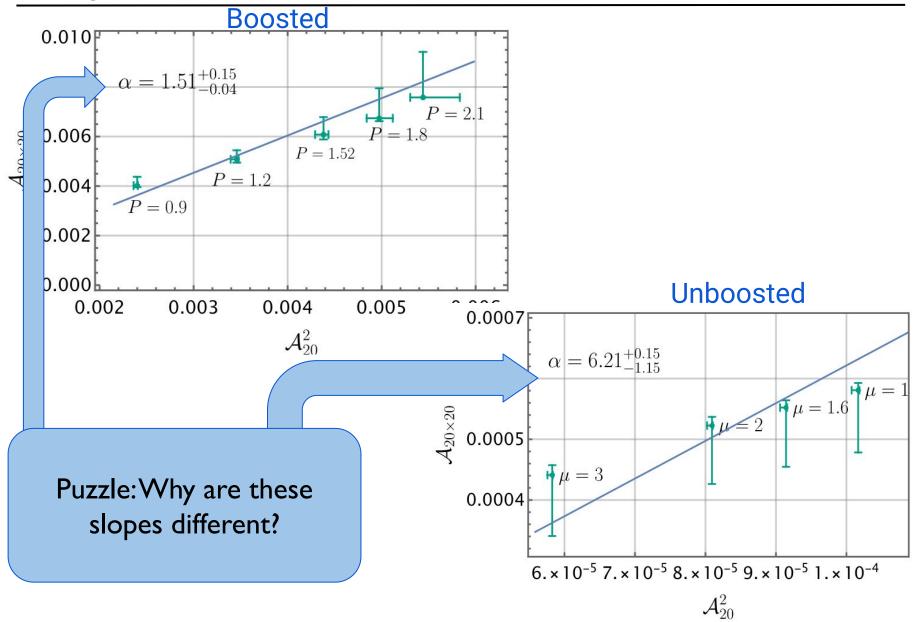
Mismatch S7 after fixing ω_{200} and ω_{201}



Stability amplitude



Amplitude relation



Mode	$\omega_{ln imes l'n'}$	Boosted (α)	Unboosted (α)
l = 2	$\omega_{20 \times 20}$	$1.51_{-0.04}^{+0.15}$	$6.21_{-1.15}^{+0.15}$
l = 4	$\omega_{20 \times 20}$	$0.73^{+0.06}_{-0.33}$	2 - 2
	$\omega_{20 \times 40}$	$2.6\substack{+0.26 \\ -0.26}$	-
l = 6 *	$\omega_{20\times40}$	$1.78_{-0.74}^{0.53}$	-
	$\omega_{20 imes 60}$	$2.52^{+1.29}_{-0.59}$	-
	$\omega_{20 \times 40}$	$1.78\substack{0.44 \\ -0.65}$	-
	$\omega_{40 imes 40}$	$2.82^{+1.5}_{-0.62}$	-

Connection horizon and infinity

- For I=4, same quadratic modes found at infinity
- For I=6, also $\omega_{200\times400}$ found at infinity

[Cheung et al, 2022 + private correspondence]

Conclusion

- ★ Quadratic QNMs fit the shear (and multipole) data at the horizon better than models with overtones
 - Iower mismatch
 - more stable amplitudes wrt changes in starting time
 - closer to the optimal frequency
 - amplitude relation is satisfied
- ★ Some of the same (quadratic) modes found at horizon and infinity
- ★ Puzzling: why is the amplitude relation for boosted and unboosted simulations different?

- (1) Why are the slopes for boosted/unboosted simulations different?
- (2) All results based on fitting observations, are there better ways to do this?
- (3) Is there a well-motivated choice of slicing/time?
- (4) Can we link observations at infinity more directly to horizon properties?